

Course Profile - Department of Physics

Course Number : PHYS 344	Course Title : Statistical and Thermal Physics			
Required / Elective : Required	Pre / Co-requisites : -			
Catalog Description:	Textbook / Required Material :			
Basic probability concepts, elementary kinetic theory, classical microcanonical, canonical and grand canonical ensembles, classical ideal gas, equipartition of energy, quantum mechanical ensembles, ideal Fermi and Bose systems, black body radiation, phonons, the electron gas, magnetism, introductory nonequilibrium statistical physics.	Federick Reif, <u>Fundementals of Statistical and</u> <u>Thermal Physics</u> , McGraw-Hill International Edition, 1985.			
Course Structure / Schedule : (3+0+2) 4 / 8	ECTS			

Extended Description :

Introduction to basic probability concepts. Statistical description of systems of particles. Statistical thermodynamics. Macroscopic parameters and their measurement, Simple applications of macroscopic thermodynamics. Basic methods and results of statistical mechanics. Equilibrium between phases or chemical species. Quantum statistics of Ideal gasses. Systems of Interacting particles. Elementary Kinetic Theory of Transport Processes.

	Compute	r usage:	Stude	ents use c	compu	tational and
Design content : None	graphics distributio	software on functior	in 1s.	studying	the	probability

Course Learning Outcomes [relevant program outcomes in brackets]:

On successful completion of this course students will be able to

- 1. distinguish between microscopic and macroscopic systems;
- 2. demonstrate knowledge of basic probabilistic description of macroscopic systems;
- 3. perform statistical analysis on simple systems such as the ideal gas to derive macroscopic general statements of thermodynamics;
- 4. recognize the interrelation between microscopic and macroscopic description of systems;
- 5. state the laws of classical thermodynamics, and apply them to simple problems;
- 6. elucidate the differences in the descriptions of systems consisting of distinguishable and indistinguishable particles;
- 7. discuss elementary concepts in non-equilibrium statistical mechanics.

Recommended reading

- Kittel, C., Kroemer, H., <u>Thermal Physics</u>, 2nd edition, Freeman, New York, 1980.
 Feynman, R.P., Leighton, R.B., Sands, M. <u>The Feynman Lectures on Physics, Volume I</u>, Addison Wesley, 1977.

Teaching methods

Lectures and exercise sessions of approximately 5 hours per week; pre-readings and homework problems.

Assessment methods (Related to course outcomes):

Two mid-term examinations, a final examination, weekly homework assignments, and quizzes.

Student workload:

Prepared by : İsmail Karakurt , 01.02.2010	Revision Date :	
TOTAL	. 200 hrs to match 25 x 8 ECTS	
Examinations	5 hrs	
Laboratory work	0 hrs	
Independent work	73 hrs	
Homework	40 hrs	
Exercise sessions	30 hrs	
Lectures, discussions	45 hrs	
Pre-reading	7 hrs	